

Model for Propane Dehydrogenation

Objective: Develop a kinetic model for Propane Dehydrogenation

In this example, we propose a simplified model for the catalytic dehydrogenation of propane to propylene on a Pt-Sn/Al2O3 catalyst. Kinetic parameters are estimated using experimental data from [1]. You may <u>download</u> the zip file that contains the examples for this study.

Features Illustrated

- Enforcement of Thermodynamic Constraints on Kinetic Parameters
- LHHW Site Models
- Dealing with Outlier Measurements
- Flags and color codes for kinetic parameters at bounds.
- Use of Compare Projects tool to choose between competing models

Reaction Network

The reversible reaction for propane dehydrogenation to propylene on supported platinum catalyst is given by:

 $\label{eq:propane} Propane \ Dehydrogenation: \qquad C_3H_8 \qquad \rightleftarrows \quad C_3H_6 \ + \ H_2$

The side reactions also taking place on the catalyst surface are:

Propane Cracking:	C_3H_8	\rightarrow	C_2H_4	$+ CH_4$
Ethylene Hydrogenation:	$C_2H_4 + H_2$	\rightarrow	C_2H_6	
Propane Hydrogenolysis:	C_3H_8 + H_2	\rightarrow	C_2H_6	+ CH4

We will start with a kinetics model proposed in [1], where the main dehydrogenation reaction rate is modeled with LHHW kinetics as follows:

$$r_{Net} = \frac{k' \left(P_{C3H8} - \frac{P_{C3H6}P_{H2}}{K_{eq}} \right)}{\left(1 + K'P_{C3H6}P_{H2}^{0.5} + K_{C3H6}P_{C3H6} + (K''P_{H2})^{0.5} + K_{H2}P_{H2} + K_{CH4}P_{CH4} + K_{C2H4}P_{C2H4} + K_{C2H6}P_{C2H6} \right)^2}$$

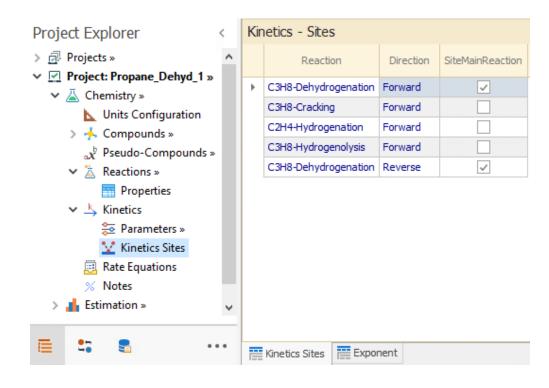
On the other hand, the side reactions are modeled as Mass Action (simple power law), without any LHHW sites.

Setting up the REX Model

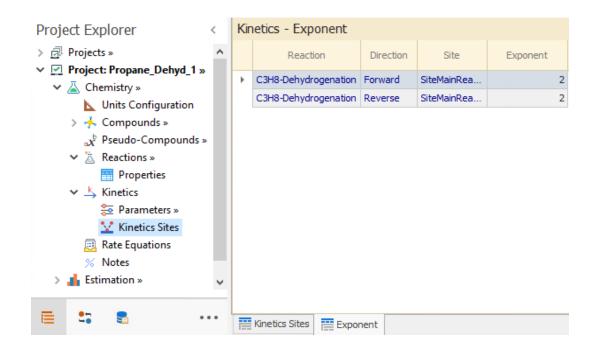
Partial Pressure is chosen as *concentration units* for the rates in Units Configuration node. Rate basis is catalyst mass for this fixed bed catalytic reactor. Other units chosen are shown below:

Project Explorer <	U	Inits		
 Project: Propane_Dehyd_1 » 	Re	action Rate Units will be	mmol/(gram - hour)	
✓ 👗 Chemistry »		Variable	Unit	
Units Configuration > 4 Compounds »	•	Time	hour	
x ^b Pseudo-Compounds »		Temperature	с	
✓ 渣 Reactions »		Pressure	Atm	
Properties		Volume	lit	
> 📥 Kinetics		Mass	gram	
🧾 Rate Equations		Moles	mmol	
% Notes		Specific Energy	kJ/mol	
> 📕 Estimation »		Surface Area	m^2	
> 🔥 Reaction Traffic »		Rate Basis	Catalyst Mass	
		Concentrations	Partial Pressure	

After defining the compounds and reactions, we include the pertinent directions for the reactions in the Kinetics node:


Project Explorer <	R	eactions						
> 🔂 Projects »								
✓ ✓ Project: Propane_Dehyd_1 »		Include	Reaction	Equation				
🗸 👗 Chemistry »			r 1					
📐 Units Configuration		V Direction:	Forward					
> 🔥 Compounds »		~	C3H8-Dehydrogenation	C3H8 <> H2 + C3H6				
y ^b Pseudo-Compounds »		\checkmark	C3H8-Cracking	C3H8> C2H4 + CH4				
✓ X Reactions »		\checkmark	C2H4-Hydrogenation	H2 + C2H4> C2H6				
Properties		\checkmark	C3H8-Hydrogenolysis	C3H8 + H2> C2H6 + CH4				
> 📥 Kinetics		✓ Direction: Reverse						
🧾 Rate Equations		~	C3H8-Dehydrogenation	C3H8 <> H2 + C3H6				
% Notes			C3H8-Cracking	C3H8> C2H4 + CH4				
> 👍 Estimation »			C2H4-Hydrogenation	H2 + C2H4> C2H6				
🔉 💦 Reaction Traffic »			C3H8-Hydrogenolysis	C3H8 + H2> C2H6 + CH4				

In the Mass Action tab of Chemistry→Kinetics→Parameters node, all reactions have their orders to be same as their stoichiometric coefficients. In the LHHW Sites tab, the site is defined as described in previous section:



Project Explorer <	Sites								
> 👼 Projects »	Site	Constant	Expression						
 Project: Propane_Dehyd_1 » Chemistry » 	SiteMainReaction	SiteMainReaction 1 1+0.1[H2] ^{0.5} [C3H6] +0.1[C3H6] +0.1[H2] ^{0.5} + 0.1[H2] + 0.1[G							
📐 Units Configuration	*		0.100.01						
A Compounds » A Pseudo-Compounds » A A A									
✓ ∑ Reactions »	SiteMainReaction	on terms							
Properties 🗸 Kinetics		Term	Pre Exponential	Energy [kJ/mol]					
Parameters »	Term1		1.00E-01	0.00					
W Kinetics Sites	Term2		1.00E-01	0.00					
🧾 Rate Equations	Term3		1.00E-01	0.00					
% Notes	Term4 Term5		1.00E-01 1.00E-01	0.00					
A Reaction Traffic »	Term6		1.00E-01	0.00					
	Term7		1.00E-01	0.00					
	*								

	SiteMainReaction	on - Termi	orders						
		Component [Atm]							
	▶ H2	0.5							
	C3H6								
E : :	*								
	Mass Action	LHHW Sites							

The adsorption site is then assigned to the main reaction in the Kinetics \rightarrow Kinetics Site node, and site exponent is set to 2 in accordance with the rate expression for the main reaction:

For the reversible dehydrogenation reaction, the net rate depends on the equilibrium constant (K_{eq}):

$$r_{Net} = r_{Forw} - r_{Rev} = \frac{k_{Forw} \left(P_{C3H8} - \frac{P_{C3H6} P_{H2}}{K_{eq}} \right)}{LHHW Site}$$

where:

$$K_{eq} = \frac{k_{Forw}}{k_{Rev}}$$

At the average temperature of the experimental sets (600C), the equilibrium constant value is K_{eq} =0.303, while the heat of reaction is 129.6 kJ/mol.

To relate those values to the kinetics parameters, we introduce the Van't Hoff equation:

$$K_{eq} = K_0 e^{-\left(\frac{\Delta H}{R}\right)\left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

Where K_0 is the equilibrium constant at temperature of T_0 . We consider T_0 =600C thus K_0 =0.303. Combining the last two equations we have:

$$K_{eq} = K_0 e^{-\left(\frac{\Delta H}{R}\right)\left(\frac{1}{T} - \frac{1}{T_0}\right)} = \frac{k_{Forw}}{k_{Rev}} = \frac{A_{Forw} e^{-\frac{E_{Forw}}{RT}}}{A_{Rev} e^{-\frac{E_{Rev}}{RT}}}$$

After rearranging some more we arrive at :

$$\left(K_0 e^{+\frac{\Delta H}{RT_0}}\right) e^{-\frac{\Delta H}{RT}} = \left(\frac{A_{Forw}}{A_{Rev}}\right) e^{-\frac{(E_{Forw} - E_{Rev})}{RT}}$$

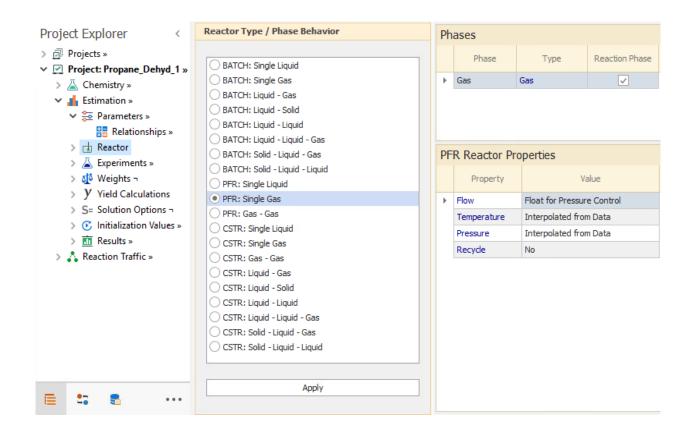
From the last equality we can obtain the following relationships:

$$E_{Forw} - E_{Rev} = \Delta H$$

$$\frac{A_{Forw}}{A_{Rev}} = K_0 e^{+\frac{\Delta H}{RT_0}}$$

In Estimation \rightarrow Parameter Relationships node we enforce the above constraints. For the activation energies, a linear relationship is defined:

Project Explorer	<	Ma	Mass Action Relationships											
> 👩 Projects »	^		Include	Relation	Kinetic Pa	Kinetic Parameter		Expression	Constraint	Right Hand Side				
V I Project: Propane_Dehye	L1					-		[C3H8-Dehydrogenation.F] - [C3H8-Dehydrogenation.R]	Туре					
> 👗 Chemistry »			~	Dehyd-Act	Activation	Energy	Linear Sum	[CSH6-Denydrogenauon.F] - [CSH6-Denydrogenauon.R]	=	129.6				
🗸 📥 Estimation »														
✓ So Parameters »		De	ehyd-Act - F	Relationship) Terms									
🔡 Relationships	»		Reaction - Direction			Coefficient/Exponent								
> 🤠 Reactor			1000			coerner	engexponent							
> 👗 Experiments »		+	C3H8-Dehydro	genation - Forwa	ard		1	1						
> 🕼 Weights ¬	~		C3H8-Dehydro	genation - Rever	se		-1	L						
<	>	*												
i 🗄 🚦	••••	_ <u>k</u>	Mass Action	🖕 Orders 🛛 🎦 L	HHW Sites									


Another parameter relationship is entered for the pre-exponentials; in this case a non-linear expression:

Project Explorer	<	Ma	ass Action F	Relationships							
> 🗗 Projects »	^		Include	Relation	Relation Kinetic Paran		Туре	Expression		Constraint Type	Right Hand Side
 Project: Propane_Dehyd_1 		•	~	Dehyd-PreExp	PreExponenti	ial	Nonlinear Product	([C3H8-Dehydrogenation.F])	/ ([C3H8-Dehydrogenation.R])	=	17200000
✓ istimation »											
✓ 😓 Parameters »		De	hyd-PreE	kp - Relatio	nship Terr	ms					
Relationships »	-	Reaction - Direction			Coef	ficient/Exponent					
> 🖶 Reactor		•	C3H8-Dehvdr	ogenation - Forv	vard		1				
> 👗 Experiments » > 🕼 Weights ¬				ogenation - Rev			-1				
< >		*									
	_										
E 🕄 🖏 😶	•	_ <u>k</u>	Mass Action	👆 Orders 🛛 🏆	LHHW Sites						

Experimental Data

The experiments are carried out in a fixed bed reactor (PFR), where pressure and temperature are kept constant. This is defined in the Reactor node, where the gas flow is defined as *float for pressure control*, thus it is calculated automatically along the reactor:

In the experiments, the feed consist of propane and hydrogen with a 0.8 hydrogen to propane ratio. The experimental design allows the analysis of the following effects:

- Temperature Effect: {580, 600, 620C}
- Weighted Hourly Space Velocity (WHSV) Effect : {2, 5, 8, 11 hr⁻¹}

We assume that all experiments are carried out with the same amount of feed. Catalyst mass is varied to obtain the desired space velocity values. Measured outlet flows of Propane, Propylene and byproducts are entered into Experiments \rightarrow Measurements \rightarrow SetName nodes of the provided rex file.

Parameter Estimation

In the Estimation node, all reactions and the LHHW site are selected for estimation. Bounds are open for pre-exponentials and activation energies of all reactions in Estimation \rightarrow Parameters node. In the Weights node, we select the compounds to be reconciled, and hybrid weights are generated for them:

Project Explorer <	Re	conciled Meas	surement	ts
 > ☐: Projects » ✓ ☑ Project: Propane_Dehyd_1 » 		Item	Total Moles	Gas
> 👗 Chemistry »	Þ	C3H8	 Image: A set of the set of the	
✓ ▲ Estimation »		H2		
✓ 😓 Parameters »		C3H6	\checkmark	
Relationships »		C2H6	\checkmark	
> 👍 Reactor		C2H4	\checkmark	
> 👗 Experiments »		CH4	\checkmark	
> 👌 Weights ¬				

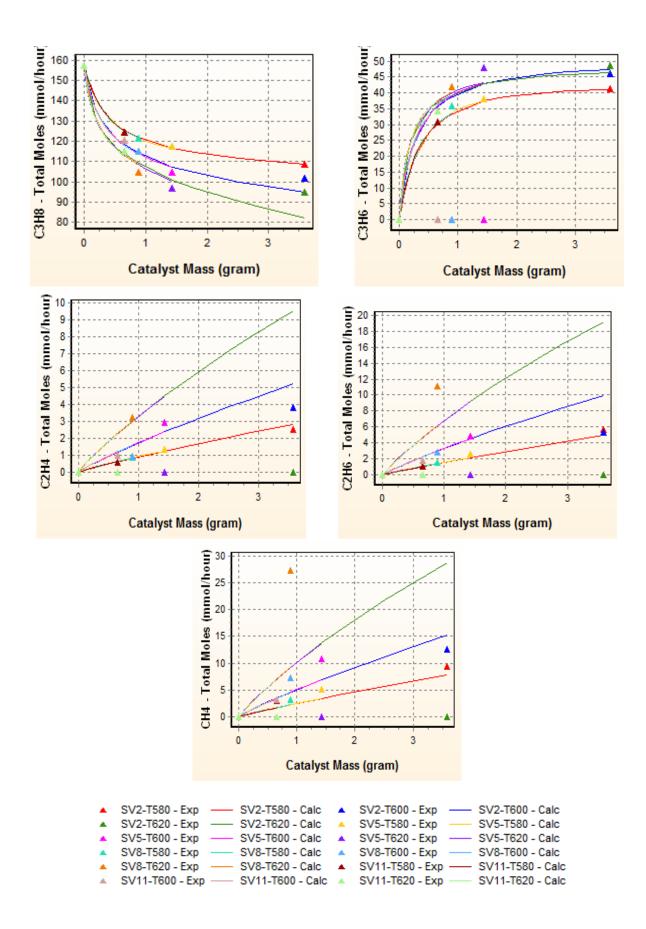
Finally, we select "Kinetics Parameters = Estimate" in the Run \rightarrow Solution Options node. The kinetic parameters are estimated by minimizing the weighted least squares prediction error of the reconciled compounds.

Model 1: Results

After running the model in <u>Propane Dehyd 1.rex</u>, we see the optimal parameter values in the Results→Parameters node:

Project Explorer	<	Est	timated Parameters	Rate Units:	mmol/(gram - ho	ur)]		
> 🗗 Projects »	^		Reaction	Pre Exponential	Activation Energy [kJ/mol]	Value @ 600C	Component [Atm]	Order
Project: Propane_Dehyd_1 » > A Chemistry »		×	✓ Direction: Forward	I	[io/inoi]	0000		
✓ ▲ Estimation »			C3H8-Dehydrogenation	1.88E+10	129.60	3.32E+02	C3H8	1
> 😓 Parameters »			C3H8-Cracking	7.38E+13	221.12	4.36E+00	C3H8	1
> 🤖 Reactor		C2H4-Hydrogenation	C2H4-Hydrogenation	2.78E-08	0.00	2.78E-08	C2H4	1
> 👗 Experiments »			czinniyarogenadom	2.762 00			H2	1
> 🚮 Weights ¬			C3H8-Hydrogenolysis	1.53E+16	250.00	1.69E+01	C3H8	1
y Yield Calculations			Conton rydrogenorysis	1.552+10	230,00	1.050-01	H2	1
> S= Solution Options ¬			V Direction: Reverse	2				
> 🕑 Initialization Values »				1.005.000		1.005.000	C3H6	1
✓ m Results »			C3H8-Dehydrogenation	1.09E+03	0.00	1.09E+03	H2	1
A Parameters	~							
E 5 5		Mas	ss Action LHHW Sites					

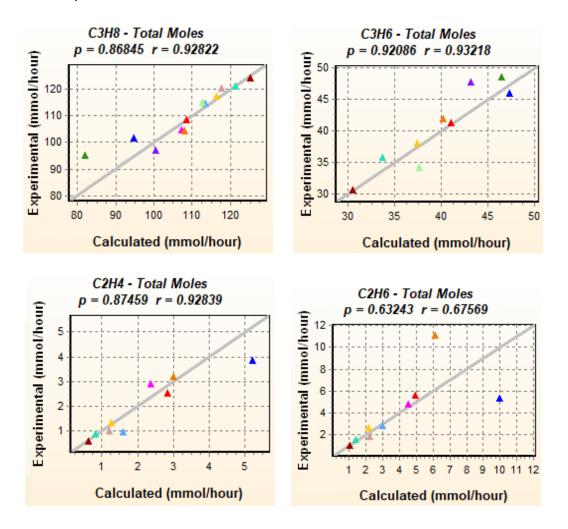
Project Explorer	<	Kir	netics Sites							
> ☐: Projects » ✓ ☑ Project: Propane_Dehyd_1 »	^		Site	Constant	Term	Pre Exponential	Energy [kJ/mol]	Value @ 600C	Component [Atm]	Order
> A Chemistry »		Þ			Term1	2.54E-08	0.00	2.54E-08	H2	0.5
✓ ▲ Estimation »					Termi	2.542-08	0.00	2.546-00	C3H6	1
> 😓 Parameters »			SiteMainReaction	on 1	Term2	3.13E-08	0.00	3.13E-08	C3H6	1
> 📩 Reactor					Term3	1.74E-07	0.00	1.74E-07	H2	0.5
> 👗 Experiments »			SitemainReaction		Term4	9.24E-10	-16.45	8.91E-09	H2	1
> 🕂 Weights ¬					Term5	8.26E-06	0.00	8.26E-06	CH4	1
> Y Yield Calculations					Term6	2.69E-06	-1.68	3.40E-06	C2H4	1
> S= Solution Options ¬					Term7	1.29E+02	0.00	1.29E+02	C2H6	1
> 🕑 Initialization Values »										
✓ m Results »										
A Parameters	\checkmark									
E : S		Kine	etics Sites Expone	nts						
		Mas	s Action LHHW Si	tes						

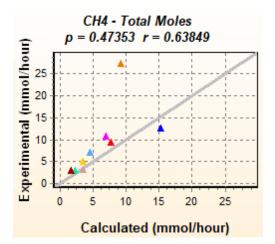

A parameter whose solution value lies at one of the bounds is indicated with a green arrow. Arrows pointing up indicate that the parameter reached its upper bound; downward arrows indicate the lower bound. The same can be seen in the Estimation \rightarrow Parameters node if a parameter is at a bound. Relaxing the bounds may improve the model. For example, the activation energy for C3H8-Dehydrogenation reaction is upper bounded and one could increase the upper bound. However, the marginal value, which is a measure of sensitivity of the objective function to the bound, for that parameter is small as seen in Results \rightarrow Marginal Values node:

roject Explorer <	M	arginal Values for the	active constraints		
Projects »		Туре	Item	Description	Marginal Value
Project: Propane_Dehyd_1 » A Chemistry »	Þ	Devenuetes Deletionship	Dehyd-PreExp	PreExponential	-0.6556
✓ ▲ Estimation »		Parameter Relationship	Dehyd-Act	Activation Energy	0.1041
> 😓 Parameters »		Reaction	C3H8-Hydrogenolysis - Forward	Activation Energy: Upper Bound	-0.01030
> 🙀 Reactor		Reaction	C3H8-Dehydrogenation - Reverse	Activation Energy: Lower Bound	0.009201
> 👗 Experiments »		Site	SiteMainReaction	Term7 - Energy: Upper Bound	-0.003339
> 🚺 Weights ¬					
> Y Yield Calculations					
> S= Solution Options ¬					
> 💽 Initialization Values »					
✓ m Results »					
🛕 Parameters					
🧾 Rate Equations					
Marginal Values					

The small marginal value indicates that the reduction in the weighted least square error would be small if the upper bound is increased. Thus we keep the bounds unchanged.

Now we inspect the model predictions to data in the *Model-Data Comparison* node. The compounds profiles for the reactant and products are shown below:





In the above charts, some of the experimental points (labeled) are not consistent with the experimental trends and are likely to be outliers. For example, C_2H_4 data increases with temperature, with the only exception of SV2-T600 where less C_2H_4 is produced than the SV2-T580 set.

Parity Charts are an alternative way of displaying the experimental and predicted values. Points on the 45 degree mean exact model match to data, while overpredicted values are located to the right of that line and underprediction to the left:

Comparing the pre-exponential values of the site terms, we see that inhibition from C_2H_6 is most significant. Other inhibition terms are negligible. However, on further analysis, we found that this model has multiple solutions. One way to see this is by fixing all but one of the pre-exponentials terms in the LHHW site to zero. The results of this study are summarized below:

Run Trial	Weighted LSQ
All Terms estimated (Model 1)	28.055
Only C ₃ H ₈ Term estimated - Other Terms fixed to zero	33.763
Only C ₃ H ₆ Term estimated - Other Terms fixed to zero	33.683
Only H ₂ (Term 3) estimated - Other Terms fixed to zero	51.660
Only H ₂ (Term 4) estimated - Other Terms fixed to zero	52.699
Only CH ₄ Term estimated - Other Terms fixed to zero	28.080
Only C ₂ H ₄ Term estimated - Other Terms fixed to zero	28.090
Only C ₂ H ₆ Term estimated - Other Terms fixed to zero	28.055

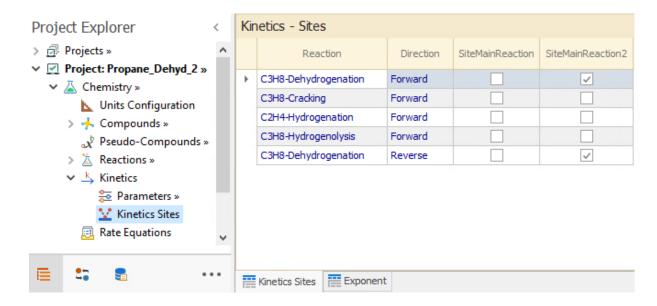
From these runs, it can be seen that the solution with all the terms optimized has nearly the same prediction error (Weighted LSQ) as the last three runs. We may draw two conclusions from these runs:

- We can eliminate the inhibition effect of C₃H₈, C₃H₆ and H₂. They are zero when estimating all terms, while estimating them separately leads to higher LSQ.
- With the available data, there is no way to separate the effects of CH₄, C₂H₄ and C₂H₆ inhibition factors. The solution obtained is very similar irrespective of whether they are all estimated simultaneously or individually. Thus, we could consider a single inhibition effect for them as a whole.

In next section, we proceed with model improvements based on this analysis.

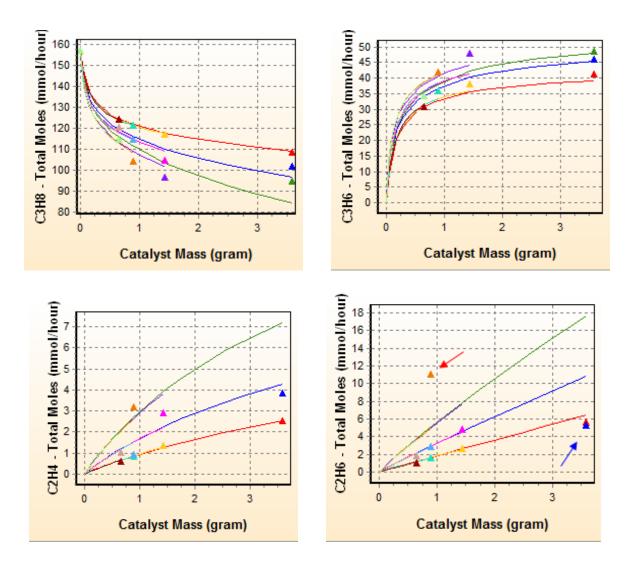
Model 2 : Simplified LHHW Inhibition for Main Reaction

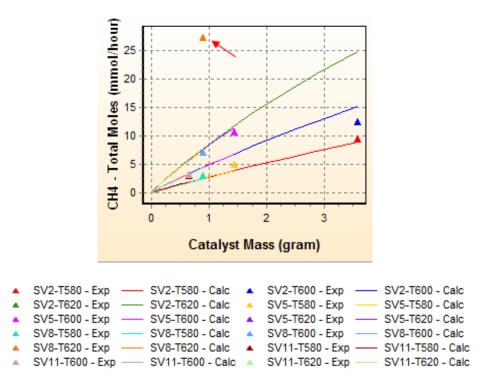
First, we ignore the effect of the outlier experimental points on the parameter estimation. This can be manually done in the Weights \rightarrow Sets node, where the weights are set to zero for these outlier points. Then, we modify the LHHW Site definition in order to consider only one combined inhibition term for CH₄, C₂H₄ and C₂H₆. To do this, in the pseudo-compounds node, the *ByProducts* variable is created as the sum of the above compounds:


Project Explorer <	Pseudo-Compounds										
 > ☐: Projects » ✓ ☑ Project: Propane_Dehyd_2 » 		Pseudo-Compound	Туре	Constant Term	Expression	Conserved					
✓ ▲ Chemistry »	۲ *	ByProducts	Linear Sum	0	[CH4] + [C2H4] + [C2H6]						
Units Configuration > </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
	ByProducts terms										
\rightarrow $\stackrel{\scriptstyle \sim}{\downarrow}$ Kinetics		Co	mpound		Coefficient/Expor	nent					
Rate Equations % Notes	Þ	CH4				1					
> 👍 Estimation »		C2H4 C2H6				1					
> 🙏 Reaction Traffic »	*					1					

Then, we define a new Site, that has only one term corresponding to the ByProducts pseudocompound:

Project Explorer <	Sites							
> 🗇 Projects »	Site		Constant	Expression				
 Project: Propane_Dehyd_2 » Chemistry » Units Configuration Compounds » Pseudo-Compounds » Reactions » Kinetics Parameters » Kinetics Sites Rate Equations Notes 	SiteMa	SiteMainReaction 1 1 + 0.1[H2] ^{0.5} [C3H6] + 0. 0.1[H2] + 0.1[CH4] + 0.1		1 + 0.1[H2] ^{0.5} [C3H6] + 0.1[0.1[H2] + 0.1[CH4] + 0.1[C	1[C3H6] + 0.1[H2] ^{0.5} + [C2H4] + 0.1[C2H6]			
	 SiteMa 	inReaction2	1	1 + 0.1[ByProducts]				
	 SiteMainReaction2 terms							
	Term		Pre Exponential		Energy [kJ/mol]			
	 Term1 Term1 	Term1		1.00E-01	1 0.00			
> 👍 Estimation »								
> 🔥 Reaction Traffic »	SiteMainReaction2 - Term1 orders							
			t [Atm]	Order				
	 ByProc 	lucts	1					
E 5 8 ····	Mass A	ction 🔚 LH	HW Sites					


We can delete the older site (SiteMainReaction), or we can keep it without assigning it to any reaction: that way the old site will not be used in the model. The new site is selected for the main reaction:

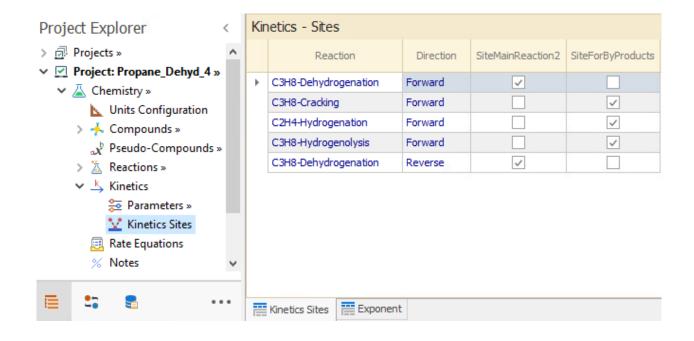

We assign an exponent of 1 for this site in the Exponent tab.

After opening bounds for the new site in the Estimation \rightarrow Parameters node, we can run this project, as shown in the <u>Propane Dehyd 2.rex</u> file. The compound profiles are shown below. The outliers that are not reconciled are indicated by arrows:

The LSQ decreases from 28.05 in Model 1 to 8.38 in Model 2. 91% of the reduction is due to the zeroing of weights for the outliers. You may use the Compare Projects tool to do further analysis. The basics for using Compare Projects are described in the last section of the Methanol Synthesis <u>example</u>. In the *By Sets and Compounds* tab, by clicking on the Absolute Difference header to sort the values, we see that the outlier points have the highest reduction in the weighted least square error:

Compare Projects <	By Sets and Compou				ዋ :
Selected Projects	-	or Variables and S der here to group by t	ets that are reconciled in that column	i both projects are co	m
 [Propane_Dehyd_1] [Propane_Dehyd_2] Differences 	Set Name	Measurement	Absolute Difference	Absolute Difference	
R Estimation Results	SV8-T620	CH4	-1.21E+01		
🔥 Reaction Traffic »	SV2-T600	C2H6	-3.97E+00		
	SV8-T620	C2H6	-2.20E+00		
	SV2-T620	C3H8	-5.41E-01		
	SV2-T600	C2H4	-4.37E-01		
	SV2-T580	CH4	-2.68E-01		
	SV5-T580	CH4	-2.53E-01		
	SV2-T600	C3H8	-2.42E-01		
	SV5-T620	C3H6	-1.92E-01		
	SV11-T580	CH4	-1.58E-01		
	SV8-T580	CH4	-1.27E-01		
	SV2-T620	C3H6	-8.91E-02		
	SV5-T580	C2H6	-8.77E-02		
	SV8-T600	C2H4	-8.27E-02		
E : :	<			1	>

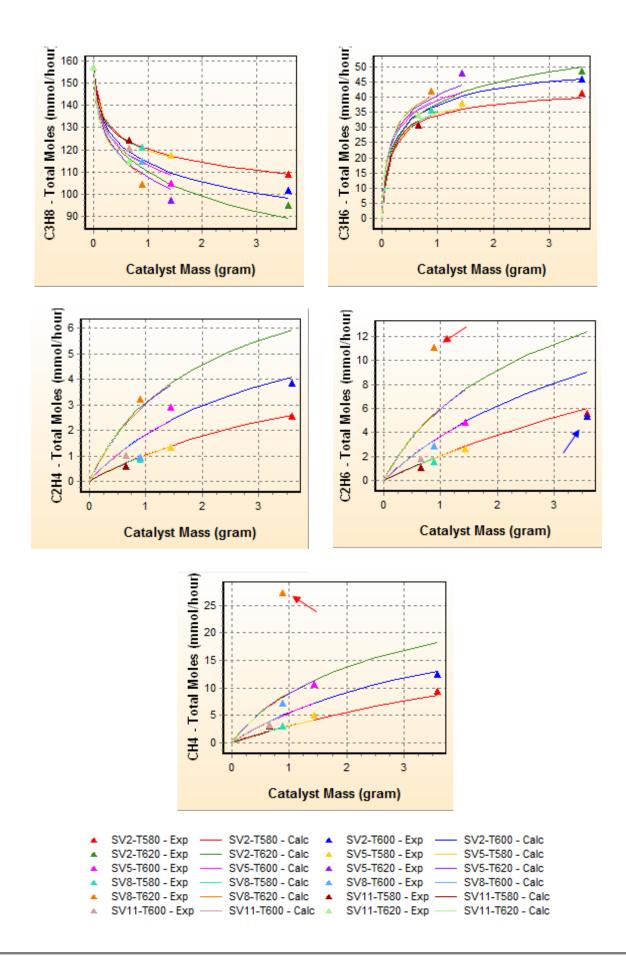
LSQ reductions are indicated with a green bar, while increases are shown in red. If you scroll down, you will see a few measurements whose LSQ worsened from Model 1 to Model 2.


Model 3 & 4: Effect of Site Inhibition on Byproduct Reactions

So far we considered Site inhibition for the main reaction only, while the reactions for byproduct formation were modeled without LHHW Sites. A look at the predicted byproduct profiles shows that the increase of CH_4 and C_2H_6 is almost linear with catalyst mass. On the other hand, the data indicates a decrease in their formation rate as catalyst mass increases, suggesting an inhibition effect. That could be due to product inhibition; we will assume that the byproducts inhibit their own formation due to competitive adsorption.

We can try assigning the same site we are using for all reactions, as it models byproduct inhibition. Thus we switch the CH₄, C₂H₄ and C₂H₆ formation reactions from Mass Action to LHHW in Chemistry→Kinetics node. Then the LHHW site is assigned for all of these reactions in Kinetics→ Kinetics Site node. After running this modified project, weighted LSQ actually increases, as you will see by importing the Propane Dehyd 3.rex file. The LSQ worsens from 8.38 to 12.5; thus we discard this model.

We can define an additional site for byproduct inhibition, to be assigned only for byproduct reactions. This new site also has only one term for the pseudo-compound that adds CH_4 , C_2H_4 and C_2H_6 . The main reaction will have the original site, as seen in the Kinetics \rightarrow Kinetics Sites node of <u>Propane_Dehyd_4.rex</u> file:


In the Estimation \rightarrow Parameters node, we open the bounds for the pre-exponential and activation energy in the new site. We also open bounds between one and two for the order of the ByProducts in order to allow for stronger inhibition as byproducts build up:

Sit	es						
	Site			Co	nstant Min	Constant	Constant Max
•	SiteMainReaction2				1	1	
	SiteForByProducts				1	1	
L							
Si	teMainReaction2 term	S					
	Term	PreExponential Min	PreExponential	PreExponentia Max	Energy Mi	n Energy [kJ/m	ol] Energy Ma
+	Term1	1.00E-04	5.62E+02	1.00E+	04 -50.0	.0 00	00 0.
Si	teMainReaction2 - Ter	m1 orders					
		Component [Atm]	I		Order Min	Order	Order Max
	ByProducts				1	1	
	> Si	SiteMainReaction2 SiteForByProducts SiteMainReaction2 term Term Term1	SiteMainReaction2 Site SiteForByProducts SiteEMainReaction2 terms Term PreExponential Min Term1 1.00E-04 SiteMainReaction2 - Term1 orders	Site SiteMainReaction2 SiteForByProducts SiteMainReaction2 terms Term PreExponential Min PreExponential Term1 1.00E-04 5.62E+02	Site Co SiteMainReaction2	Site Constant Min SiteMainReaction2 1 SiteForByProducts 1 Image: SiteForByProducts Image: SiteMainReaction2 terms Image: SiteMainReaction2 terms Term PreExponential Min PreExponential Max Energy Min Term1 1.00E-04 S.62E+02 1.00E+04 -50.0 Image: SiteMainReaction2 - Term1 orders	Site Constant Min Constant SiteMainReaction2 1 1 SiteForByProducts 1 1 SiteMainReaction2 terms Term PreExponential Min PreExponential Max Energy Min Energy [kJ/min] Term1 1.00E-04 5.62E+02 1.00E+04 -50.00 0.

After running the project we now get a 25% reduction of LSQ, from 8.38 (Model 2) to 6.29 in this Model 4.

You can see the more curved profile for the byproduct in the chart below. (Outliers not reconciled are indicated with arrows)

Further Studies

The Reaction Traffic node shows that C_2H_6 is produced from two reactions. By enabling the carbon traffic feature, it is clear that one of these paths is very small. You may eliminate the weaker path and check the impact on the predictive ability of the model.

References

1. A. Farjoo, F. Khorasheha, S. Niknaddaf, M. Soltani "Kinetic modeling of side reactions in propane dehydrogenation over Pt-Sn/γ-Al2O3 catalyst". *Scientia Iranica C (2011) 18 (3), 458–464*

